Replisome Assembly Reveals the Basis for Asymmetric Function in Leading and Lagging Strand Replication

نویسندگان

  • Alexander Yuzhakov
  • Jennifer Turner
  • Mike O'Donnell
چکیده

The E. coli replicase, DNA polymerase III holoenzyme, contains two polymerases for replication of duplex DNA. The DNA strands are antiparallel requiring different modes of replicating the two strands: one is continuous (leading) while the other is discontinuous (lagging). The two polymerases within holoenzyme are generally thought to have asymmetric functions for replication of these two strands. This report finds that the two polymerases have equal properties, both are capable of replicating the more difficult lagging strand. Asymmetric action is, however, imposed by the helicase that encircles the lagging strand. The helicase contact defines the leading polymerase constraining it to a subset of actions, while leaving the other to cycle on the lagging strand. The symmetric actions of the two polymerases free holoenzyme to assemble into the replisome in either orientation without concern for a correct match to one or the other strand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution of a eukaryotic replisome reveals the mechanism of asymmetric distribution of DNA polymerases

Eukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) α, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vit...

متن کامل

Replisome mechanics: lagging strand events that influence speed and processivity

The antiparallel structure of DNA requires lagging strand synthesis to proceed in the opposite direction of the replication fork. This imposes unique events that occur only on the lagging strand, such as primase binding to DnaB helicase, RNA synthesis, and SS B antigen (SSB) displacement during Okazaki fragment extension. Single-molecule and ensemble techniques are combined to examine the effec...

متن کامل

How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication

The eukaryotic replisome is a molecular machine that coordinates the Cdc45-MCM-GINS (CMG) replicative DNA helicase with DNA polymerases α, δ, and ε and other proteins to copy the leading- and lagging-strand templates at rates between 1 and 2 kb min-1. We have now reconstituted this sophisticated machine with purified proteins, beginning with regulated CMG assembly and activation. We show that r...

متن کامل

Coordinated DNA Replication by the Bacteriophage T4 Replisome

The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since...

متن کامل

Eukaryotic Origin-Dependent DNA Replication In Vitro Reveals Sequential Action of DDK and S-CDK Kinases

Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 86  شماره 

صفحات  -

تاریخ انتشار 1996